
Supplementary Material

The Kullback-Leibler divergence. Here we discuss the choice of the Kullback–
Leibler divergence as being appropriate for quantifying the loss-to-prior h2(ν, π).
With n independent pieces of information x = (x1, . . . , xn) we take the cumula-
tive loss as

L(ν; π, x) =
n∑
i=1

h1(ν, xi) + h2(ν, π), (1)

where h1 will be taken as the expected loss:

h1(ν, xi) =

∫
Θ

l(θ, xi) ν(dθ).

This is the only coherent choice based on the problem posed by minimizing∫
l(θ, x) dF0(x).

Adhering to the “likelihood principle” (see Bernardo and Smith 1994), for any
0 < m < n, all the information contained in (x1, . . . , xm) is to be found in ν̂m,
where ν̂m minimizes

L(ν; π, x1, . . . , xm) =
m∑
i=1

h1(ν, xi) + h2(ν, π).

and hence it follows that,

L(ν; π, x) =
n∑

i=m+1

h1(ν, xi) + h2(ν, ν̂m),

where ν̂m now serves as the prior for future information (xm+1, . . . , xn). For
coherence, the solution from L for all cases of m must be the same. To derive the
form of h2 to guarantee this we start with the family of g–divergences, that is

h2(ν, π) = dg(ν, π) =

∫
g(dπ/dν) dν (2)

where g is a convex function from (0,∞) to the real line and g(1) = 0. See Ali
and Silvey (1966). This provides a large class of functions; and some special cases
include g(s) = 1 −

√
s, the Hellinger divergence, which is equivalent to the L1

metric; g(s) = s−1− 1 yields the chi-squared divergence. For the coherence to be
in force, it is necessary that the discrepancy h2 is the Kullback-Leibler divergence;
i.e. g(s) = − log s. The following theorem can be stated:
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Theorem. Let the loss L(ν; π, [x1, x2]) be defined by (1) and (2). Moreover, let
ν̂(π,x1,x2) be the probability measure that minimizes the loss

L(ν; π, [x1, x2])

among the probability measures on Θ that are absolutely continuous with respect
to π. Similarly, let ν̂(π,x1) and ν̂(ν̂(π,x1),x2) be the probability measures minimizing
the loss L(ν; π, x1) and L(ν; ν̂(π,x1), x2), respectively. Assume that

ν̂(ν̂(π,x1),x2) = ν̂(π,[x1,x2]) (3)

for every probability measure π on Θ and for every choice of the loss functions
h1(ν, x1) and h2(ν, x2) such that ν̂(π,[x1,x2]), ν̂(π,x1), ν̂(ν̂(x1),x2), are all properly
defined. Then h2 is the Kullback–Leibler divergence.

This theorem has been proven by Bissiri and Walker (2012b). A more concise
proof is given, assuming the differentiability of g, here. In virtue of this Theorem,
for coherence it is required to take

h2(ν, π) = dKL(ν, π) =

∫
ν log(ν/π),

the Kullback–Leibler divergence. So, in the case of m = 0, we have

L(ν; π, x) =
n∑
i=1

h1(ν, xi) + dKL(ν, π),

where π is the initial choice of probability measure representing beliefs about θ in
the absence of x.

The solution to this minimization problem is easy to find and is given by

ν(dθ) =
exp {−

∑n
i=1 li(θ, xi)} π(dθ)∫

exp {−
∑n

i=1 li(θ, xi)} π(dθ)
,

and this is the solution since one can see that∫
l(θ, x) ν(dθ) +

∫
ν(dθ) log{ν(θ)/π(θ)}

=
∫
ν(dθ) log{ν(θ)/[exp(−l(θ, x))π(θ)]}.

The solution is clearly seen to be coherent for all state spaces Θ.
To show that the log function is the only solution that covers all state spaces,

Θ, we need only provide an example where for coherence the g–divergence has to
be the log function.
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Proof of Theorem. Assume that Θ contains at least two distinct points, say θ1

and θ2. Otherwise, π is degenerate and the thesis is trivially satisfied. To prove
this theorem, it is sufficient to consider the case n = 2 and a very specific choice
for π, taking π = p0δθ1 +(1−p0)δθ2 , where 0 < p0 < 1. Any probability measure
ν absolutely continuous with respect to π has to be equal to pδθ1 + (1− p)δθ2 , for
some 0 ≤ p ≤ 1. Therefore, in this specific situation, the loss L(ν; I, π) becomes:

l(p, p0, hI) := p hI(θ1) + (1− p)hI(y1)

+ p0 g

(
p

p0

)
+ (1− p0) g

(
1− p
1− p0

)
,

where hI(θi) = h(θi, I1) + h(θi, I2) for I = (I1, I2) and hI(θi) = h1(θi, Ij) for
I = Ij , i, j = 1, 2. Denote by p1 the probability πI1({θ1}), i.e. the minimum point
of l(p, p1, h(I1,I2)) as a function of p, and by p2 the probability π(I1,I2))({θ1}). By
hypotheses, p2 is the unique minimum point of both loss functions l(p, p1, hI2)
and l(p, p0, h(I1,I2)). Again by hypothesis, we shall consider only those func-
tions hI1 and hI2 such that each one of the functions l(p, p0, hI1), l(p, p1, hI2),
and l(p, p0, h(I1,I2)), as a function of p, has a unique minimum point, which is p1

for the first one and p2 for the second and third one. The values p1 and p2 have
to be strictly bigger than zero and strictly smaller than one: this was proved by
Bissiri and Walker (2012) in their Lemma 2. Hence, p1 has to be a stationary
point of l(p, p0, hI1) and p2 of both the functions l(p, p1, hI2) and l(p, p0, h(I1,I2)).
Therefore,

g′
(
p1

p0

)
− g′

(
1− p1

1− p0

)
= hI1(y1) − hI1(θ1), (4)

g′
(
p2

p0

)
− g′

(
1− p2

1− p0

)
= h(I1,I2)(y1) − h(I1,I2)(θ1), (5)

g′
(
p2

p1

)
− g′

(
1− p2

1− p1

)
= hI2(y1) − hI2(θ1). (6)

Recall that h(I1,I2) = hI2 + hI1 . Therefore, summing up term by term (4) and (6),
and considering (5), one obtains:

g′
(
p2

p0

)
− g′

(
1− p2

1− p0

)
= g′

(
p1

p0

)
− g′

(
1− p1

1− p0

)
+ g′

(
p2

p1

)
− g′

(
1− p2

1− p1

)
.

(7)

Recall that by hypothesis (4)–(6) need to hold for every two functions hI1 and
hI2 arbitrarily chosen with the only requirement that p1 and p2 uniquely exist.
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Hence, (7) needs to hold for every (p0, p1, p2) in (0, 1)3. By substituting t = p0,
x = p1/p0 and y = p2/p1, (7) becomes

g′ (xy) − g′
(

1− txy
1− t

)
= g′(x) − g′

(
1− tx
1− t

)
+ g′ (y) − g′

(
1− txy
1− tx

)
,

(8)

which holds for every 0 < t < 1, and every x, y > 0 such that x < 1/t and
y < 1/(xt). Being g convex and differentiable, its derivative g′ is continuous.
Therefore, letting t go to zero, (8) implies that

g′ (xy) = g′(x) + g′ (y) − g′(1) (9)

holds true for every x, y > 0. Define the function ϕ(·) = g′(·) − g′(1). This
function is continuous, being g′ such, and by (9), ϕ(xy) = ϕ(x) + ϕ(y) holds for
every x, y > 0. Hence, ϕ(·) is k ln(·) for some k, and therefore

g′(x) = k ln(x) + g′(1), (10)

where k = (g′(2) − g′(1))/ ln(2). Being g convex, g′ is not decreasing and
therefore k ≥ 0. If k = 0, then g′ is constant, which is impossible, otherwise, for
any hI , p1 satisfying (4) either would not exist or would not be unique. Therefore,
k must be positive. Being g(1) = 0 by assumption, (10) implies that g(x) =
k x ln(x) + (g′(1)− k)(x− 1). Hence,

h2(ν1, ν2) = k

∫
ln

(
dν1

dν2

)
dν1

holds true for some k > 0 and for every couple of measures (ν1, ν2) on Θ such
that ν1 is absolutely continuous with respect to ν2.
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Joint inference for quantiles and the Bayesian boxplot. We discuss this illustra-
tion for three reasons. The first is that there is a unique loss function for learning
about a set of quantiles, countering the notion that loss functions are arbitrary,
and second there is no traditional Bayesian version for updating a set of quantiles
which can coincide with our approach. Finally, we show how boxplots, one of
the most widely used exploratory graphical tool, can be enhanced by taking into
account uncertainty in the plot due to a finite sample size.

Let us start with the median solely. The unique loss function for learning
about the median of a distribution function is given by l(θ, x) = w|θ − x| for
some w > 0. Hence, the posterior distribution is given by

π(θ|x1, . . . , xn) ∝ exp

{
−w

n∑
i=1

|xi − θ|

}
π(θ).

One might be tempted to argue that this is merely a Bayesian update using the
Laplace distribution and hence falls within the Bayesian paradigm. This is correct
but it would put the Bayesian in an awkward quandary if she knew, for example,
the observations were coming from a normal distribution.

In fact we are, as we have stated previously, not assigning a probability model
for x. To make this distinction more explicit let us consider the situation where
we want to learn about the three quartiles (θ1, θ2, θ3) jointly, where θ1 is the lower
quartile, θ2 the median, and θ3 the upper quartile. The prior will be denoted by
π(θ1, θ2, θ3) which would obviously include the constraint θ1 < θ2 < θ3. The
loss function l(θ, x) in this case, treating the learning of the quartiles with equal
importance, is given by

l(θ, x) = w {0.25(θ1 − x)+ + 0.75(x− θ1)++

+0.5|θ2 − x|+ 0.75(θ3 − x)+ + 0.25(x− θ3)+}

for some w > 0. Then the posterior distribution is given by

π(θ|x1, . . . , xn) ∝ π(θ) exp

{
n∑
i=1

l(θ, xi)

}
.

This can not be obtained by any Bayesian model that has currently been proposed.
It is certainly therefore not classifiable as a Bayesian update.

We can illustrate the utility of this by considering a boxplot. In Fig (1) we
show a boxplot of data taken from the example used in MATLAB help file for
the function boxplot.m, in the statistics toolbox. The plot illustrates the dis-
tribution of miles per gallon (MPG) from records of a selection of cars taken in
the 1970s, broken down by manufacturing country. The data set is available as
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carbig.mat in MATLAB, we have omitted the “England” group which con-
tains only 1 observation.

The boxplot is one of the most important and widely used graphical tool ap-
plied to summarise the distribution of data and highlight potential differences in
the distributions across groups, but there is traditionally no uncertainty displayed
in the summary statistics of the distributions used in the boxplot. In fact, for this
data there are only 13 observations for “French” cars while there are 249 observa-
tions for the “USA”, yet the conventional boxplot fails to inform on this.

We placed a prior on the median, upper and lower quartiles defined by the
blue boxes in Fig (1) and account for the uncertainty by inferring the poste-
rior distribution on these unknowns. Let θ1 denote the lower quartile, θ2 the
median and θ3 the upper quartile. We adopted a normal, fairly vague, prior,
θ1 ∼ N(10, 100); θ2 ∼ N(20, 100); θ3 ∼ N(30, 100), with the constraint
θ1 < θ2 < θ3. We adopt the “observed unit information loss” in the setting of w,
see Section 3, so

ŵ =

∫
log{π(θ̂)/π(θ)} π(dθ)

1
n−p

∑n
i=1 l(θ̂x, xi)

,

where we estimate
∫

log{π(θ̂)/π(θ)} π(dθ) via Monte Carlo methods and use a
Nelder-Mead optimiser for θ̂x.

We then implemented a Metropolis-Hastings MCMC algorithm to sample
from the posterior π(θ1, θ2, θ3|x), for each of the 6 groups of cars shown in Fig
(1), using 100,000 samples with a 50,000 sample burn-in.

In Fig (2) we show our “Bayesian boxplot” which includes the original boxes
(empirical estimates) overlaid with 95% credible intervals for (θ1, θ2, θ3). Credible
intervals are shown as extended dotted lines from the empirical estimates with a
small diamond denoting the edge of the interval. In comparison with Fig (1)
we see that Fig (2) contains much more information. For example, we see that
while in Fig (1) the median MPG of Italian and Swedish cars look different, in
fact the 95% credible intervals overlap in Fig (2). In addition we see that there
is considerable overlap in the distribution of medians between Sweden and the
USA; and in general, comparison of medians or distributions in the conventional
boxplot are obscured and confounded by sample size.

The MCMC samples approximately from π(θ1, θ2, θ3|x) for France and USA
are shown in Figs (3), (4). The data set for France contains 13 observations and
hence there is much greater uncertainty in the posterior marginals. Moreover,
looking at the joint densities of (θ1, θ2) and (θ2, θ3) we can see the constraints
imposed by the prior. In contrast, due to the higher sample size the posterior
samples for the USA are tighter and hence exhibit less dependence. An interesting
extension would be to include hierarchical priors on the quartiles whereby one
could borrow strength across groups.
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Figure 1: Boxplot of cars MPG data; taken from the MATLAB boxplot.m help
file illustration.
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Figure 2: General Bayesian Boxplot of cars MPG data using Unit Information
Loss
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Figure 3: Posterior samples for quartiles of Franch cars MPG data using Unit
Information Loss
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Figure 4: Posterior samples for quartiles of USA cars MPG data using Unit Infor-
mation Loss
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